設為首頁 電子郵箱 聯系我們    
首頁期刊簡介編委會行業動態書刊信息廣告業務學術會議聯系我們
位置:首頁 >> 電子期刊 >> 正文
生物催化膜用于微量有機污染物去除的研究進展
作者:周芳芳 羅建泉  陳向榮 萬印華 
單位:生化工程國家重點實驗室 中國科學院過程工程研究所 中國科學院大學 北京 100190 
關鍵詞:膜技術 生物催化膜 微量有機污染物 酶膜反應器 酶固定化 
分類號:TQ050.4
出版年,卷(期):頁碼:2018,38(6):121-128
摘要:

 微量有機污染物對人體的潛在危害巨大,如何實現對其高效綠色去除是目前的研究熱點。生物催化膜作為一種新興的仿生分離技術,集成了生物催化和膜分離功能,操作條件溫和,可應用于微量有機污染物的高效去除。本文對生物催化膜的原理、特點、制備方法及其在工業污染物、藥物及個人護理品、農藥和生物毒素四類微量有機污染物去除上的應用研究進行了系統闡述,為生物催化膜技術的進一步發展和應用提供理論指導。

 Organic micropollutants are detrimental to human health, and the efficient and green removal of the micropollutants becomes a research hotspot nowadays. As an emerging biomimetic separation technology, biocatalytic membrane technology integrates biologic catalysis and membrane separation functions, which can be applied for highly efficient removal of organic micropollutants under mild operating conditions. This review summarized the mechanisms, properties and preparation methods of the biocatalytic membrane as well as its applications in removal of industrial pollutants, pharmaceuticals and personal care products, pesticides and biotoxins. This review is also expected to provide theoretical guidance for the further development and application of biocatalytic membrane technology.

基金項目:
國家重點研發計劃(2017YFC1600906),國家自然科學基金青年項目(21506229)
作者簡介:
第一作者簡介: 周芳芳(1995-),女,山東聊城人,碩士研究生,主要從事酶固定化和真菌毒素去除研究,Email:[email protected] 通訊作者,Email: [email protected]
參考文獻:

 [1]De Cazes M, Abejón R, Belleville M P, et al. Membrane bioprocesses for pharmaceutical micropollutant removal from waters[J]. Membranes, 2014, 4(4): 692-729.

[2]姜春龍. 微量/痕量有機污染物前處理技術研究進展[J]. 黑龍江環境通報, 2012 (2): 54-57.
[3]Dai Y, Yao J, Song Y, et al. Enhanced adsorption and degradation of phenolic pollutants in water by carbon nanotube modified laccase-carrying electrospun fibrous membranes[J]. Environ Sci Nano, 2016, 3(4): 857-868. 
[4]Abejón R, Belleville M P, Sanchez-Marcano J. Design, economic evaluation and optimization of enzymatic membrane reactors for antibiotics degradation in wastewaters[J]. Sep Purif Technol, 2015, 156: 183-199.
[5]Cao X, Luo J, Woodley J M, et al. Bioinspired multifunctional membrane for aquatic micropollutants removal[J]. ACS Appl Mater Interf, 2016, 8(44): 30511-30522.
[6]Silva C P, Otero M, Esteves V. Processes for the elimination of estrogenic steroid hormones from water: a review[J]. Environ Pollut, 2012, 165: 38-58.
[7]李鵬, 賴衛華, 金晶. 食品中真菌毒素的研究[J]. 農產品加工(學刊), 2005, 3: 12-15.
[8]De Cazes M, Belleville M P, Petit E, et al. Design and optimization of an enzymatic membrane reactor for tetracycline degradation[J]. Catal Today, 2014, 236: 146-152.
[9]呂煒. 飲用水中重點有機污染物對人體健康危害的研究進展[J]. 中國預防醫學雜志, 2007, 8(5): 668-670.
[10]Abejón R, De Cazes M, Belleville M P, et al. Large-scale enzymatic membrane reactors for tetracycline degradation in WWTP effluents[J]. Water Res, 2015, 73: 118-131.
[11]崔芳, 袁博. 再生水中微量有機污染物去除的研究進展[J]. 工業水處理, 2012, 32(8): 9-14.
[12]黃德, 王學松. 酶膜生物反應器及其應用[J]. 現代化工, 1988, 1: 59-63.
[13]鄧茂先, 陳祥貴. 環境內分泌干擾物研究進展[J]. 國外醫學: 衛生學分冊, 2000, 27(2): 65-68.
[14]王夢喬, 周慶, 李愛民. 環境水體微污染有機物及其去除技術研究進展[J]. 環境污染與防治, 2012, 34 (6): 71-76.
[15]胡洪營, 王超, 郭美婷. 藥品和個人護理用品 (PPCPs) 對環境的污染現狀與研究進展[J]. 生態環境, 2005, 14(6): 947-952.
[16] Silva C P, Otero M, Esteves V. Processes for the elimination of estrogenic steroid hormones from water: a review[J]. Environ Pollut, 2012, 165: 38-58.
[17]李夢華, 孔維軍, 楊美華, 等. 化妝品中有毒有害物質污染現狀及其檢測方法研究進展[J]. 中華中醫藥雜志, 2016, 31(6): 2239-2242.
[18]Xu R, Si Y, Wu X, et al. Triclosan removal by laccase immobilized on mesoporous nanofibers: strong adsorption and efficient degradation[J]. Chem Eng J, 2014, 255: 63-70. 
[19]Fan J, Luo J, Wan Y. Membrane chromatography for fast enzyme purification, immobilization and catalysis: A renewable biocatalytic membrane[J]. J Membr Sci, 2017, 538: 68-76.
[20]曹曉彤. 基于聚多巴胺仿生涂層的分離, 吸附, 催化多功能膜的制備, 優化及應用[D]. 中國科學院大學 (中國科學院過程工程研究所), 2017.
[21]代云容, 袁鈺, 于彩虹, 等. 靜電紡絲纖維膜固定化漆酶對水中雙酚 A 的降解性能[J]. 環境科學學報, 2015, 35(7): 2107-2113.
[22] 梁剛. 納米生物催化降解環境水中酚類污染物的機理研究[D]. 吉林大學, 2016.
[23] Xu R, Chi C, Li F, et al. Immobilization of horseradish peroxidase on electrospun microfibrous membranes for biodegradation and adsorption of bisphenol A[J]. Bioresource technol, 2013, 149: 111-116.
[24]Giorno L, Drioli E. Biocatalytic membrane reactors: applications and perspectives[J]. Trends Biotechnol, 2000, 18(8): 339-349.
[25]石陸娥. 酶膜生物反應器制備核苷酸的研究[D]. 杭州: 浙江工業大學, 2007.
[26]王振剛. 基于聚丙烯腈的分離膜制備與酶固定化研究[D]. 杭州: 浙江大學, 2008.
[27]Gupta S, Bhattacharya A, Murthy C N. Tune to immobilize lipases on polymer membranes: techniques, factors and prospects[J]. Biocatal Agric Biotechnol, 2013, 2(3): 171-190. 
[28]Cao X, Luo J, Woodley J M, et al. Mussel-inspired co-deposition to enhance bisphenol A removal in a bifacial enzymatic membrane reactor[J]. Chem Eng J, 2018, 336: 315-324.
[29]Datta S, Christena L R, Rajaram Y R S. Enzyme immobilization: an overview on techniques and support materials[J]. 3 Biotech, 2013, 3(1): 1-9.
[30]羅建泉, 曹曉彤, 吳媛媛, 等. 基于 “膜污染思維” 的酶固定化方法及其應用[J]. 膜科學與技術, 2017, 37(3): 97-103.
[31]Ji C, Hou J, Chen V. Cross-linked carbon nanotubes-based biocatalytic membranes for micro-pollutants degradation: performance, stability, and regeneration[J]. J Membr Sci, 2016, 520: 869-880.
[32]Li S, Luo J, Wan Y. Regenerable biocatalytic nanofiltration membrane for aquatic micropollutants removal[J]. J Membr Sci, 2018, 549: 120-128.
[33]Lee C H, Lin T S, Mou C Y. Mesoporous materials for encapsulating enzymes[J]. Nano Today, 2009, 4(2): 165-179.
[34]Hilal N, Nigmatullin R, Alpatova A. Immobilization of cross-linked lipase aggregates within microporous polymeric membranes[J]. J Membr Sci, 2004, 238(1-2): 131-141.
[35]Mahlicli F Y, ?en Y, Mutlu M, et al. Immobilization of superoxide dismutase/catalase onto polysulfone membranes to suppress hemodialysis-induced oxidative stress: A comparison of two immobilization methods[J]. J Membr Sci, 2015, 479: 175-189.
[36]Zhang H, Luo J, Li S, et al. Biocatalytic Membrane Based on Polydopamine Coating: A Platform for Studying Immobilization Mechanisms[J]. Langmuir, 2018, 34(8): 2585-2594.
[37]Xu R, Cui J, Tang R, et al. Removal of 2, 4, 6-trichlorophenol by laccase immobilized on nano-copper incorporated electrospun fibrous membrane-high efficiency, stability and reusability[J]. Chem Eng J, 2017, 326: 647-655.
[38]Hou J, Dong G, Ye Y, et al. Enzymatic degradation of bisphenol-A with immobilized laccase on TiO2 sol–gel coated PVDF membrane[J]. J Membr Sci, 2014, 469: 19-30.
[39]Ji C, Hou J, Wang K, et al. Single‐Enzyme Biofuel Cells[J]. Angew Chem, 2017, 129(33): 9894-9898.
[40]Ji C, Hou J, Wang K, et al. Biocatalytic degradation of carbamazepine with immobilized laccase-mediator membrane hybrid reactor[J]. J Membr Sci, 2016, 502: 11-20.
[41]Taheran M, Naghdi M, Brar S K, et al. Covalent Immobilization of laccase onto nanofibrous membrane for degradation of pharmaceutical residues in water[J]. ACS Sustain Chem Eng, 2017, 5(11): 10430-10438.
[42]Gebreyohannes A Y, Mazzei R, Yahia Marei Abdelrahim M, et al. Phosphotriesterase-magnetic nanoparticles bioconjugates with improved enzyme activity in a biocatalytic membrane reactor[J]. Bioconjugate chem, 2018, 29 (6): 2001–2008.
[43]Zeinvand-Lorestani H, Sabzevari O, Setayesh N, et al. Comparative study of in vitro prooxidative properties and genotoxicity induced by aflatoxin B1 and its laccase-mediated detoxification products[J]. Chemosphere, 2015, 135: 1-6.
[44]Li S, Luo J, Fan J, et al. Aflatoxin B1 removal by multifunctional membrane based on polydopamine intermediate layer[J]. Sep Purif Technol, 2018, 199: 311-319.
[45]Becker D, Rodriguez-Mozaz S, Insa S, et al. Removal of endocrine disrupting chemicals in wastewater by enzymatic treatment with fungal laccases[J]. Org Process Res Dev, 2017, 21(4): 480-491.
服務與反饋:
文章下載】【加入收藏

《膜科學與技術》編輯部       地址:北京市朝陽區北三環東路19號藍星大廈  郵政編碼:100029電話:010-80492417/010-80485372  傳真:010-80485372郵箱:[email protected]

京公網安備 11011302000819 號

斗地主在线玩