設為首頁 電子郵箱 聯系我們    
首頁期刊簡介編委會行業動態書刊信息廣告業務學術會議聯系我們
位置:首頁 >> 電子期刊 >> 正文
MOFs有機-無機雜化膜的制備及應用研究進展
作者:周玲玲1 牛照棟1 湯立紅2* 朱利平3 
單位:1昆明理工大學環境科學與工程學院 昆明 650500 2云南大學化學科學與工程學院 昆明 650500 3浙江大學高分子科學與工程學系 高分子合成與功能構造教育部重點實驗室 杭州 310027 
關鍵詞:金屬有機骨架 有機-無機雜化 雜化膜 
分類號:TQ028.8
出版年,卷(期):頁碼:2018,38(6):111-120
摘要:

 本文綜述了基于金屬有機骨架(metal-organic frameworks, MOFs)材料發展而來的有機-無機雜化膜的制備方法及其在氣體分離、滲透汽化和納濾等領域的應用。其中,氣體分離主要介紹了雜化膜材料對H2,CO2和CH4等混合組分氣體的分離性能;滲透汽化是基于溶劑脫水或者水相中有機物的去除等領域的應用展開的;納濾則主要介紹了雜化膜材料對小分子物質的分離性能。同時,還闡述了雜化膜材料在以上應用中所起的作用。最后,總結了這種材料在研究過程中所面臨的主要挑戰,并對今后的發展做出了展望。

 This paper reviews the preparation methods of organic-inorganic hybrid membranes based on metal-organic frameworks materials and their applications in gas separation, pervaporation and nanofiltration. Among them, gas separation mainly introduces the separation performance of hybrid membrane material to H2, CO2, CH4 and other mixed components. Pervaporation is based on the application of solvent dehydration or removal of organic matter in aqueous phase. Nanofiltration mainly introduces the separation property of the hybrid membrane material to small molecule matter. Meanwhile, the role of hybrid membrane material in the above application is also expounded. Finally, this paper sums up the main challenges faced by this material in the process of research, and make a prospect for the future development.

基金項目:
國家自然科學基金(51573159和51273176)
作者簡介:
第一作者:周玲玲(1994—),女,重慶萬州人,碩士研究生,研究方向為基于金屬有機骨架膜材料在環境中的應用。E-mail:[email protected] 通訊作者:E-mail:[email protected]
參考文獻:

 [1] QIN D, LIU Z, LIU Z, et al. Superior antifouling capability of hydrogel forward osmosis membrane for treating wastewaters with high concentration of organic foulants [J]. Environmental Science & Technology, 2018, 52(3): 1421-1428.

[2] SMOLDERS K, FRANKEN A C M. Terminology for Membrane Distillation [J]. Desalination, 2017, 72(3): 249-262.
[3] SHE Q, WANG R, FANE A G, et al. Membrane fouling in osmotically driven membrane processes: A review [J]. Journal of Membrane Science, 2016, 499: 201-233.
[4] 徐又一, 徐志康. 高分子膜材料 [M]. 材料科學與工程出版中心, 2005.
[5] QIU S, XUE M, ZHU G. Metal-organic framework membranes: from synthesis to separation application [J]. Chemical Society Reviews, 2014, 43(16): 6116-6140.
[6] MARCHETTI P, JIMENEZ SOLOMON M F, SZEKELY G, et al. Molecular separation with organic solvent nanofiltration: a critical review [J]. Chemical Reviews, 2014, 114(21): 10735-10806.
[7] 牛照棟, 關清卿, 陳秋玲, et al. 膦酸類金屬-有機骨架材料對CO2的吸附性能研究進展 [J]. 化工進展, 2017, 36(5): 1782-1790.
[8] YAGHI O M, DAVIS C E, GUANGMING LI A, et al. Selective Guest Binding by Tailored Channels in a 3-D Porous Zinc(II)−Benzenetricarboxylate Network [J]. Journal of the American Chemical Society, 1997, 119(12): 2861-2868.
[9] YUAN S, FENG L, WANG K, et al. Stable Metal-Organic Frameworks: Design, Synthesis, and Applications [J]. Advanced Materials, 2018: 1704303-1704303.
[10] CAR A, STROPNIK C, PEINEMANN K V. Hybrid membrane materials with different metal–organic frameworks (MOFs) for gas separation [J]. Desalination, 2006, 200(1): 424-426.
[11] HE Y R, TANG Y P, MA D, et al. UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal [J]. Journal of Membrane Science, 2017, 541: 262-270.
[12] DENG Y H, CHEN J T, CHANG C H, et al. A Drying‐Free, Water‐Based Process for Fabricating Mixed‐Matrix Membranes with Outstanding Pervaporation Performance [J]. Angewandte Chemie International Edition, 2016, 55(41): 12793-12796.
[13] LIU X, DEMIR N K, WU Z, et al. Highly Water-Stable Zirconium Metal-Organic Framework UiO-66 Membranes Supported on Alumina Hollow Fibers for Desalination [J]. Journal of the American Chemical Society, 2015, 137(22): 6999-7002.
[14] SUMIDA K, ROGOW D L, MASON J A, et al. Carbon dioxide capture in metal-organic frameworks [J]. Chemical Reviews, 2012, 112(2): 724-781.
[15] PAN Y, LIU Y, ZENG G, et al. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system [J]. Chemical Communications, 2011, 47(7): 2071-2073.
[16] WU D, GASSENSMITH J J, GOUV ªA D, et al. Direct calorimetric measurement of enthalpy of adsorption of carbon dioxide on CD-MOF-2, a green metal-organic framework [J]. Journal of the American Chemical Society, 2013, 135(18): 6790-6793.
[17] CHEN Y, PROF J J. A Bio‐Metal–Organic Framework for Highly Selective CO2 Capture: A Molecular Simulation Study [J]. Chemsuschem, 2010, 3(8): 982-988.
[18] GAGNON K J, PERRY H P, CLEARFIELD A. Conventional and unconventional metal-organic frameworks based on phosphonate ligands: MOFs and UMOFs [J]. Chemical Reviews, 2012, 112(2): 1034-1054.
[19] HAO X R, WANG X L, SHAO K Z, et al. Remarkable solvent-size effects in constructing novel porous 1,3,5-benzenetricarboxylate metal–organic frameworks [J]. Crystengcomm, 2012, 14(17): 5596-5603.
[20] BAGABAS A A, FRASCONI M, IEHL J, et al. γ-Cyclodextrin cuprate sandwich-type complexes [J]. Inorganic Chemistry, 2013, 52(6): 2854-2861.
[21] SARAWADE P, TAN H, POLSHETTIWAR V. Shape- and Morphology-Controlled Sustainable Synthesis of Cu, Co, and In Metal Organic Frameworks with High CO2 Capture Capacity [J]. Acs Sustainable Chemistry & Engineering, 2013, 1(1): 66-74.
[22] PICHON A, LAZUENGARAY A, JAMES S L. Solvent-free synthesis of a microporous metal–organic framework [J]. Crystengcomm, 2006, 8(3): 211-214.
[23] SORRIBAS S, GORGOJO P, T LLEZ C, et al. High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration [J]. Journal of the American Chemical Society, 2013, 135(40): 15201-15208.
[24] SUN H, TANG B, WU P. Development of Hybrid Ultrafiltration Membranes with Improved Water Separation Properties Using Modified Superhydrophilic Metal-Organic Framework Nanoparticles [J]. Acs Applied Materials & Interfaces, 2017, 9(25): 21473-21484.
[25] WANG L, FANG M, LIU J, et al. Layer-by-Layer Fabrication of High-Performance Polyamide/ZIF-8 Nanocomposite Membrane for Nanofiltration Applications [J]. Acs Applied Materials & Interfaces, 2015, 7(43): 24082-24093.
[26] WANG N, LIU T, SHEN H, et al. Ceramic tubular MOF hybrid membrane fabricated through in situ layer‐by‐layer self‐assembly for nanofiltration [J]. Aiche Journal, 2016, 62(2): 538-546.
[27] WU F, LIN L, LIU H, et al. Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/methyl tert-butyl ether mixtures by secondary growth [J]. Journal of Membrane Science, 2017, 544: 342-350.
[28] LI X, LIU Y, WANG J, et al. Metal-organic frameworks based membranes for liquid separation [J]. Chemical Society Reviews, 2017, 46(23): 7124-7144.
[29] LU A X, PLOSKONKA A M, TOVAR T M, et al. Direct Surface Growth Of UiO-66-NH2 on Polyacrylonitrile Nanofibers for Efficient Toxic Chemical Removal [J]. Industrial & Engineering Chemistry Research, 2017, 56(49):  14502-14506.
[30] LAWSON S, HAJARI A, ROWNAGHI A A, et al. MOF immobilization on the surface of polymer-cordierite composite monoliths through in-situ crystal growth [J]. Separation & Purification Technology, 2017, 183: 173-180.
[31] ZHU Y, GUPTA K M, LIU Q, et al. Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes [J]. Desalination, 2016, 385: 75-82.
[32] GHOLAMI F, ZINADINI S, ZINATIZADEH A A, et al. TMU-5 Metal-Organic frameworks (MOFs) as a novel nanofiller for flux increment and fouling mitigation in PES ultrafiltration membrane [J]. Separation & Purification Technology, 2017, 194: 272-280.
[33] MA J, GUO X, YING Y, et al. Composite ultrafiltration membrane tailored by [email protected] with highly improved water purification performance [J]. Chemical Engineering Journal, 2016, 313: 890-898.
[34] ZHU J, QIN L, ULIANA A A, et al. Elevated Performance of Thin Film Nanocomposite Membranes Enabled by Modified Hydrophilic MOFs for Nanofiltration [J]. Acs Appl Mater Interfaces, 2017, 9(2): 1975-1986.
[35] S NCHEZ-LA NEZ J, ZORNOZA B, FRIEBE S, et al. Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test [J]. Journal of Membrane Science, 2016, 515: 45-53.
[36] BASU S, CANO A. Asymmetric Matrimid®/[Cu3(BTC)2] mixed-matrix membranes for gas separations [J]. Journal of Membrane Science, 2010, 362(1): 478-487.
[37] YAO B J, DING L G, LI F, et al. Chemically Cross-Linked MOF Membrane Generated from Imidazolium-Based Ionic Liquid Decorated UiO-66 Type NMOF and its Application toward CO2 Separation and Conversion [J]. Acs Applied Materials & Interfaces, 2017, 9(44): 38919-38930.
[38] LIN R, GE L, DIAO H, et al. Ionic Liquids as the MOFs/Polymer Interfacial Binder for Efficient Membrane Separation [J]. Acs Appl Mater Interfaces, 2016, 8(46): 32041-32049.
[39] LIU X, WANG C, WANG B, et al. Novel Organic‐Dehydration Membranes Prepared from Zirconium Metal‐Organic Frameworks [J]. Advanced Functional Materials, 2017, 27(3): 1604311-1604311.
[40] ZHANG W, YING Y, MA J, et al. Mixed matrix membranes incorporated with polydopamine-coated metal-organic framework for dehydration of ethylene glycol by pervaporation [J]. Journal of Membrane Science, 2017, 527: 8-17.
[41] BASU S, MAES M, CANO-ODENA A, et al. Solvent resistant nanofiltration (SRNF) membranes based on metal-organic frameworks [J]. Journal of Membrane Science, 2009, 344(1): 190-198.
[42] LI Y, WEE L H, MARTENS J A, et al. Interfacial synthesis of ZIF-8 membranes with improved nanofiltration performance [J]. Journal of Membrane Science, 2016, 523: 561-566.
[43] LIU X L, LI Y S, ZHU G Q, et al. An Organophilic Pervaporation Membrane Derived from Metal-Organic Framework Nanoparticles for Efficient Recovery of Bio‐Alcohols [J]. Angewandte Chemie, 2011, 50(45): 10734-10734.
[44] ZHANG R, JI S, WANG N, et al. Coordination-driven in?situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes [J]. Angewandte Chemie, 2014, 53(37): 9775-9779.
[45] MA X H, YANG Z, YAO Z K, et al. A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes [J]. Journal of Membrane Science, 2016, 525: 269-276.
[46] KITAO T, ZHANG Y, KITAGAWA S, et al. Hybridization of MOFs and polymers [J]. Chemical Society Reviews, 2017, 46(11): 3108-3133.
[47] FAN H, SHI Q, YAN H, et al. Simultaneous Spray Self‐Assembly of Highly Loaded ZIF‐8-PDMS Nanohybrid Membranes Exhibiting Exceptionally High Biobutanol‐Permselective Pervaporation [J]. Angewandte Chemie, 2014, 126(22): 5684-5688.
[48] WU T, SHEN L, LUEBBERS M, et al. Enhancing the stability of metal-organic frameworks in humid air by incorporating water repellent functional groups [J]. Chemical Communications, 2010, 46(33): 6120-6122.
[49] LI H, SADIQ M M, SUZUKI K, et al. Magnetic Metal–Organic Frameworks for Efficient Carbon Dioxide Capture and Remote Trigger Release [J]. Advanced Materials, 2016, 28(9): 1839-1844.
[50] NGUYEN J G, COHEN S M. Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification [J]. Journal of the American Chemical Society, 2010, 132(13): 4560-4561.
服務與反饋:
文章下載】【加入收藏

《膜科學與技術》編輯部       地址:北京市朝陽區北三環東路19號藍星大廈  郵政編碼:100029電話:010-80492417/010-80485372  傳真:010-80485372郵箱:[email protected]

京公網安備 11011302000819 號

斗地主在线玩