設為首頁 電子郵箱 聯系我們    
首頁期刊簡介編委會行業動態書刊信息廣告業務學術會議聯系我們
位置:首頁 >> 電子期刊 >> 正文
陽極施加恒電位對EAM-MFC啟動性能改善的研究
作者:梁晶晶1 2 吳云1 2 * 王珍瓊1 2 楚紅亮3 韓璐潔2 張宏偉1 2 孫中芳 
單位:1天津工業大學 省部共建分離膜與膜過程國家重點實驗室 天津 300387  2 天津工業大學 環境與化學工程學院 天津 300387 3中海油天津化工研究設計院有限公司 天津 300131 
關鍵詞:微生物燃料電池 導電曝氣陰極 脫氮 恒電位 FISH 
分類號:X52
出版年,卷(期):頁碼:2018,38(6):76-83
摘要:

 微生物燃料電池(MFC)普遍存在啟動速度慢的現象,且啟動方式對陰陽極性能影響較大。本文通過對陽極施加恒電位對比分析了恒電位對以導電曝氣膜組件為生物陰極的微生物燃料電池(EAM-MFC)系統啟動過程和生物陰極性能作用的影響。結果表明,在系統陽極施加-290 mV恒電位的啟動方式較常規方式能夠在使系統啟動周期縮短的同時明顯提升陰極脫氮性能,陰極電勢和電池的輸出電壓分別較常規啟動方式提高84 ± 1.51 mV和127 ± 2.09 mV;陰極室COD、氨氮、總氮去除率分別提高32.77 %、10.09 %和21.42 %;此外,外加電位能夠刺激陰極生物膜上反硝化微生物的生長。

 Microbial fuel cell (MFC) generally has a slow start-up, and the starting mode has great influence on the performance of anode and cathode. In this paper, the effect of constant potential on the starting process of the system and the performance of the biological cathode was analyzed by applying constant potential to the anode. The results showed that the application of constant potentials accelerated the startup process of the system and improved the bio-cathode performance of EAM-MFC. Cathode potential and EAM-MFC output voltage increased by 84 ± 1.51 mV and 127 ± 2.09 mV respectively; the cathode COD, ammonia nitrogen and total nitrogen removal efficiency were increased by 32.77 %, 10.09 % and 21.42 % respectively; and it can stimulate the growth of denitrifying microorganism on the cathode membrane module.

基金項目:
國家自然基金面上項目(51678410);中國博士后科學基金(2015M571267);天津市科技計劃項目(16PTGCCX00070)
作者簡介:
第一作者簡介:梁晶晶(1992-),女,河北省大名縣人,碩士研究生,廢水脫氮和微生物燃料電池, E-mail:[email protected]
參考文獻:

 [1] Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation.[J]. Trends Biotechol, 2005, 23(6):291.

[2] Lovley D R. Microbial fuel cells: novel microbial physiologies and engineering approaches[J]. Curr Opin Biotech, 2006, 17(3):327.
[3] He Z, Largus&#x, T Angenent. Application of Bacterial Biocathodes in Microbial Fuel Cells[J]. Electroanal, 2006, 18(19-20):2009-2015.
[4] Liu G, Yates M D, Cheng S, et al. Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments.[J]. Bioresource Technol, 2011, 102(15):7301-7306.
[5] Aelterman P, Rabaey K, Hai T P, et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells.[J]. Environ Sci Technol 2006, 40(10):3388-3394.
[6] Wagner R C, Call D F, Logan B E. Optimal Set Anode Potentials Vary in Bioelectrochemical Systems[J]. Environ Sci & Technol, 2010, 44(16):6036-6041.
[7] Wang X, Feng Y, Ren N, et al. Accelerated start-up of two-chambered microbial fuel cells: Effect of anodic positive poised potential[J]. Electrochim Acta, 2009, 54(3):1109-1114.
[8] Aelterman P, Freguia S, Keller J, et al. The anode potential regulates bacterial activity in microbial fuel cells[J]. Appl Microbiol & Biot, 2008, 78(3):409-418.
[9]李金洋, 陳濤, 胡艷清,等. 外加直流電場對微生物燃料電池陽極微生物的影響研究[J]. 可再生能源, 2012,30(4):93-96.
[10]丁為俊, 劉鵬, 劉偉鳳,等. 循環伏安掃描對微生物燃料電池啟動和產電性能的影響[J]. 化工學報, 2017, 68(3):1205-1210.
[11] Wu Y, Yang Q, Zeng Q, et al.Enhanced low C/N nitrogen removal in an innovative microbial fuel cell (MFC) with electroconductivity aerated membrane (EAM) as biocathode[J]. Chem Eng J, 2017, 316:315-322.
[12] Manz W, Amann R, Ludwig W, et al. Phylogenetic Oligodeoxynucleotide Probes for the Major Subclasses of Proteobacteria: Problems and Solutions[J]. Syst & Appl Microbiol, 1992, 15(4):593-600.
[13] Pous N, Puig S, Balaguer M D, et al. Cathode potential and anode electron donor evaluation for a suitable treatment of nitrate-contaminated groundwater in bioelectrochemical systems[J]. Chem Eng J, 2015, 263(46):151-159.
[14]張永宜. 氨遷移對陰極反硝化雙室微生物燃料電池產電性能及脫氮效率的影響實驗[D]. 西安,長安大學, 2014.
[15] Ghosh S, Inganäs O. Conducting Polymer Hydrogels as 3D Electrodes: Applications for Supercapacitors[J]. Adv Mater, 1999, 11(14):1214-1218.
[16] Fei Z, Jian L, Zhen H. A new method for nutrients removal and recovery from wastewater using a bioelectrochemical system[J]. Bioresource Technol, 2014, 166(8):630-634.
[17] Anthonisen A C, Loehr R C, Prakasam T B, et al. Inhibition of nitrification by ammonia and nitrous acid.[J]. J  Water Pollut Control Fed, 1976, 48(5):835.
[18] Cho S, Fujii N, Lee T, et al. Development of a simultaneous partial nitrification and anaerobic ammonia oxidation process in a single reactor[J]. Bioresource Technol, 2011, 102(2):652-659.
[19] Amann R I, Binder B J, Olson R J, et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations.[J]. Appl & Environ Microb, 1990, 56(6):1919.
[20] Daims H, Brühl A, Amann R, et al. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set.[J]. Syst & Appl Microbiol, 1999, 22(3):434-444.
[21] Juretschko S, Timmermann G, Schmid M, et al. Combined Molecular and Conventional Analyses of Nitrifying Bacterium Diversity in Activated Sludge: Nitrosococcus mobilis, and Nitrospira -Like Bacteria as Dominant Populations[J]. Appl & Environ Microb, 1998, 64(8):3042-3051.
[22] Wagner M, Rath G, Amann R, et al. In situ, Identification of Ammonia-oxidizing Bacteria[J]. Syst & Appl Microbiol, 1995, 18(2):251-264.
[23] Zhang G, Zhang H, Ma Y, et al. Membrane filtration biocathode microbial fuel cell for nitrogen removal and electricity generation.[J]. Enzyme & Microb Tech, 2014, 60(60):56. 
[24] Thayanukul P, Zang K, Janhom T, et al. Concentration-dependent response of estrone-degrading bacterial community in activated sludge analyzed by microautoradiography-fluorescence in situ hybridization.[J]. Water Res, 2010, 44(17):4878.
[25] Beschkov V, Velizarov S, Agathos S N, et al. Bacterial denitrification of waste water stimulated by constant electric field[J]. Biochem Eng J, 2004, 17(2):141-145.
 
服務與反饋:
文章下載】【加入收藏

《膜科學與技術》編輯部       地址:北京市朝陽區北三環東路19號藍星大廈  郵政編碼:100029電話:010-80492417/010-80485372  傳真:010-80485372郵箱:[email protected]

京公網安備 11011302000819 號

斗地主在线玩