設為首頁 電子郵箱 聯系我們    
首頁期刊簡介編委會行業動態書刊信息廣告業務學術會議聯系我們
位置:首頁 >> 電子期刊 >> 正文
[email protected]/PDDA多層膜的制備及其有機溶劑納濾性能研究
作者:汪林 申洪泮 王乃鑫 紀樹蘭 
單位:北京工業大學 環境與能源工程學院 綠色催化與分離北京市重點實驗室 北京 100124 
關鍵詞:氧化石墨烯 層層自組裝 有機溶劑納濾 溶劑綠 染料脫除 
分類號:TQ028.8
出版年,卷(期):頁碼:2018,38(6):48-55
摘要:

 采用溶劑綠7(SG)對氧化石墨烯(GO)片層進行修飾制備得到[email protected]復合材料,以層層自組裝法制備[email protected]/聚二甲基二烯丙基氯化銨(PDDA)復合膜并考察該復合膜的有機溶劑納濾性能。通過透射電鏡、原子力顯微鏡、紅外光譜(FTIR)等表征驗證了SG對GO的成功改性,改性后GO片層厚度明顯增加,同時FTIR譜圖中出現磺酸根的特征峰。隨著組裝的進行,Zeta電位結果顯示膜表面電荷成規律性交替變化,X射線衍射譜圖中GO的特征峰增強,掃描電鏡圖中膜層的厚度增加,證明了[email protected]與PDDA的成功組裝。同時考察了組裝層數、SG濃度、染料種類等條件對復合膜分離性能的影響。結果表明,當SG濃度為1.5 g/L,組裝層數為3.5層時,制備的([email protected]/PDDA)3.5復合膜對甲基藍/甲醇顯示出良好的分離性能,其通量及截留率分別可達到50 L/(m2?h?MPa)及95.2%。此外,該復合膜在400 min連續性能測試過程中,表現出良好的穩定性。

 In this study, solvent green (SG) were utilized to modify graphene oxide nanosheets and then [email protected]/PDDA multilayer membranes were fabricated from the as-prepared [email protected] composite via layer-by-layer self-assembly. The preparation of [email protected] was confirmed by TEM, AFM, FTIR and XPS. The results showed that the thickness of GO nanosheets were increased from 2.2 nm to 2.7 nm due to the deposition of SG molecules. The regular alternation of Zeta potential on the surface indicated the successful assembly between [email protected] and PDDA. This could also be proved by the intensity increase of GO characteristic peak on the XRD curves. Then the organic solvent nanofiltration performance of [email protected]/PDDA membrane was studied. The optimized flux and dye retention for methyl blue/methanol solution could respectively reach 50 L/(m2?h?MPa) and 95.2% when the concentration of SG is 1.5 g/L, assembly layer is 3.5. Besides, the obtained [email protected]/PDDA membrane showed desirable stability which could be demonstrated by the 400-min continuous nanofiltration test.

基金項目:
國家自然科學基金資助項目(21576003)
作者簡介:
第一作者簡介:汪林(1989-),男,安徽省宣城市人,博士生,主要從事滲透汽化及納濾方面研究,E-mail:[email protected] *通訊作者,E-mail:[email protected]
參考文獻:

 [1]邢雅南, 蘇保衛, 甄宏艷. 耐溶劑納濾膜的制備與應用研究進展[J]. 化工進展, 2015, 34(11): 3832-3840.

[2]Karan S, Jiang Z, Livingston A G. Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348(6241): 1347-1351.
[3]Cheng X Q, Zhang Y L, Wang Z X, et al. Recent advances in polymeric solvent‐resistant nanofiltration membranes[J]. Adv Polym Technol, 2014, 33(S1).
[4]Soroko I, Bhole Y, Livingston A G. Environmentally friendly route for the preparation of solvent resistant polyimide nanofiltration membranes[J]. Green Chem, 2011, 13(1): 162-168.
[5]吳曉莉, 王景濤, 張浩勤, 等. HPAN/PEI-PDMS 有機溶劑納濾復合膜的制備與性能[J]. 膜科學與技術, 2016, 36(2): 13-19.
[6]Chen D. Solvent‐resistant nanofiltration membranes based on multilayered polyelectrolytes deposited on silicon composite[J]. J Appl Polym Sci, 2013, 129(6): 3156-3161.
[7]Richardson J J, Björnmalm M, Caruso F. Technology-driven layer-by-layer assembly of nanofilms[J]. Science, 2015, 348(6233): aaa2491.
[8]Zhang H, Mao H, Wang J, et al. Mineralization-inspired preparation of composite membranes with polyethyleneimine–nanoparticle hybrid active layer for solvent resistant nanofiltration[J]. J Membr Sci, 2014, 470: 70-79.
[9]Lee J Y, Qi S, Liu X, et al. Synthesis and characterization of silica gel–polyacrylonitrile mixed matrix forward osmosis membranes based on layer-by-layer assembly[J]. Sep Purif Technol, 2014, 124: 207-216.
[10]Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide[J]. Chem Soc Rev, 2010, 39(1): 228-240.
[11]Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature, 2007, 448(7152): 457.
[12]Liu S, Zeng T H, Hofmann M, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress[J]. ACS Nano, 2011, 5(9): 6971-6980.
[13]Liu J, Tang J, Gooding J J. Strategies for chemical modification of graphene and applications of chemically modified graphene[J]. J Mater Chem 2012, 22(25): 12435-12452.
[14]Su Q, Pang S, Alijani V, et al. Composites of graphene with large aromatic molecules[J]. Adv Mater, 2009, 21(31): 3191-3195.
[15]Zhang W, Han H, Bai H, et al. A highly efficient and visualized method for glycan enrichment by self-assembling pyrene derivative functionalized free graphene oxide[J]. Anal Chem, 2013, 85(5): 2703-2709.
[16]Wang L, Wang N, Li J, et al. Layer-by-layer self-assembly of polycation/GO nanofiltration membrane with enhanced stability and fouling resistance[J]. Sep Purif Technol, 2016, 160: 123-131.
[17]Tsou C H, An Q F, Lo S C, et al. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration[J]. J Membr Sci, 2015, 477: 93-100.
[18]Vanherck K, Hermans S, Verbiest T, et al. Using the photothermal effect to improve membrane separations via localized heating[J]. J Mater Chem, 2011, 21(16): 6079-6087.
[19]Vanherck K, Vankelecom I, Verbiest T. Improving fluxes of polyimide membranes containing gold nanoparticles by photothermal heating[J]. J Membr Sci, 2011, 373(1-2): 5-13.
[20]Vanherck K, Aerts A, Martens J, et al. Hollow filler based mixed matrix membranes[J]. Chem Commun, 2010, 46(14): 2492-2494.
[21]Geens J, Boussu K, Vandecasteele C, et al. Modelling of solute transport in non-aqueous nanofiltration[J]. J Membr Sci, 2006, 281(1-2): 139-148.
[22]Basu S, Maes M, Cano-Odena A, et al. Solvent resistant nanofiltration (SRNF) membranes based on metal-organic frameworks[J]. J Membr Sci, 2009, 344(1-2): 190-198.
服務與反饋:
文章下載】【加入收藏

《膜科學與技術》編輯部       地址:北京市朝陽區北三環東路19號藍星大廈  郵政編碼:100029電話:010-80492417/010-80485372  傳真:010-80485372郵箱:[email protected]

京公網安備 11011302000819 號

斗地主在线玩